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Abstract

The earth is usually represented in Cartesian Coordinates on a projection
plane with the atmosphere mapped three-dimensionally. Most such maps are
orthogonal and in this case the equations of motion take a particularly simple

form.
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Transformation of the Equations of Motion of Meteorology
into Arbitrary Orthogonal Coordinates

1. INTRODUCTION

The flow at various levels in the atmosphere is generally represented on
flat surfaces, or maps. The equations which govern this flow are derived for
the spherical earth. In order to solve these equations numerically, as applied
to actual maps, one must transform the flow equations into map coordinates.
The coordinate system to be used depends upon the problem. For example,
almost all numerical prediction work concerns jtself with flow over a large part
of the Northern Hemisphere represented on a stereographic projection. For
some purposes, the Mercator projection, or a combination of Mercator and
stereographic, have been used.

For easy reference, it seemed desirable to write the equations of motion in
several orthogonal coordinate systems. In this paper the equations of motion of
meteorology have been transformed from spherical coordinates into any orthogo-
nal system, so that one need only substitute the transformation formulas without
actually carrying out the lengthy computations to obtain the desired system.

(Author's manuscript approved for publication, 13 November 1962)




2. THE TRANSFORMATIONS

The equations of motion of meteorology are usually expressed in terms of
distances and directions relative to the earth. Thus, we have:

Fe-rcos ¢;‘+2(i+ﬂ)(z'-cos ¢—rsin¢q;),
Fn-r$+21'-¢.+rsinécos¢;~().\+29), (1)

Fu-;'—r ¢-2—r cosz¢i (i +2Q)

Here, Fe, Fn‘ Fu are respectively the eastward, northward, and upward com-
ponents of the force on a particle of unit mass; N, ¢, r are the usual spherical
coordinates—longitude, latitude, and distance to the center of the earth, respec~
tively—and £ is the angular velocity of the earth's rotation; the dots represent
differentiation with respect to time.

However, in many situations in which the equations are tobe applied, one is con»
cerned not with the spherical earth but with a flat projection or map of the earth's
surface, the atmosphere being represented three~dimensionally above the projection,
For such applications it may be useful to have an equivalent set of equations which
involve only quantities in the projected system. The purpose of this report is to
demonstrate how, for a large class of maps, the equations of motion can be trans-
formed into a simple equivalent set of equations relative to the map.

We consider the earth as a sphere of radius ro. A, ¢, r are spherical co-
ordinates as above. Then, if the projection plane is the x-y plane of a rectangu-

lar system x~y-z, the map is determined by expressing x and y as functions of
A\ and ¢:

x=sx (M, ¢9),

(2)
y=y &, ¢

and z as a function of r alone, specifically:

z®r-r, (3)




chosen so that z = o, that is the x-y plane, corresponds to the earth's surface
r=r.. The inverse transformation is then representable in the form:

¢= ¢ (x, y).
A= (x,y) 4)

r=z2+r_.
o]

AAA
Now let i, 5‘, k be the unit vectors in the spherical system with directions:

? - eastward,
A

J - northward,
A

k - upward.

Velocity and force vectors may then be expressed in terms of these. The
-
velocity V is seen to be:

- . . cA
V =r cos ¢).’i\ +r¢?+rk, (5)
->
and the force F on a unit mass, is simply:

> A A
F=F 1 +FJ+ F k,

(6)
Fo: Fio F as in Eq. (1),
-
The position vector R (relative to the center of the earth) is:
R=rk (1)

The partial derivatives of this expression with respect to x, y, z are vectors in~
dicating the directions of increasing x, y, z respectively:

oR afkon, afog, akoar

X" (rﬁ) r—-ra)‘ bx —78—)%+§_rﬁ)' (8)
and since

%'Tcos¢;g—&--j —3—%-0,




then:

oR oNa, 244 A

—;-r(cos ¢5—x +8xJ)' rthx, (9)
where

tx = (c052 “;——:“)2 + (%)2)1/2
and ft ” is now a unit vector. Similarly,

—> N " A

R Bha_ 304

-5-;=r(cos¢—§1+8y3)-ny Ry‘ {(10)
where

2 2,1/2
2y (), (24

t = A4

'y (cos é(&y + oy )
Finally,

aﬁ’ 9 A or A A

5 ey o= (FD)k k-, ()

A A A A A A A nal
. . =

Obviously R, * R, -A Ry ARZ 0, so for R., Ry' R, to be an orthogonal set we

need only the condition R_ - Ry = 0, that is
arBh 2. 040¢ A &)
Oﬁﬁaycos é*axay('txtyax'ny. (12)

In the following we shall assume that this orthogonality condition holds in the
given projection.

It is now possible to derive expressions for the components of the force and
the velocity in the new system by dot multiplying the respective vectors with the
unit vectors Rx, Ry, Rz. Thus, let Fx, Fy' Fz be the components of the force in

the x, y, 2z directions respectively, and let u, v, w be the components of the
velocity.




Then:
o, o 28
F '?ﬁ =Fecos¢8x+Fnax ,
X X tx
o, p b8
— A Fecosdiay+Fnay
F_=F --R_= 3 ’
y y y
-
FZ-F.RZ.Fu
And:

A _r 2 8N L3¢
u= -Rx-t—(cos ¢ﬁ)‘+ﬁ¢)'

®

TR =L 2 ,0h, 8¢
v=7V R 0, (cos $F2 +8y¢)‘

Solving for).\ and ¢ in the first two equations of Eq. (14) we get:

u 94 _vi 99
*3 y&x,

rcos ¢J

\ =

ut. 3N vt 3\
be By Yox

-rJ

where J is the Jacobian of the transformation (A, ¢) —»(x, y), that is,

_9\8¢ ard
J H‘S%'W x

(13)

(14)

(15)

(16)

Substituting Eq. (15) in Eq. (13) and using Eq. (1), Eq. (14) and the condition

Eq. {(12) one obtains:




ot Bt 2
au_ 1 LA 2QRcos”¢ AN L u
Fx.m v [29“51’1‘ rtxty (u 7 v x]+w [ Ex ﬁ+?]n
8 2
& 1 (Iai_ , ) +w|20cos9 BNy v
Fy"dt"’“ 2eQ sin ¢ iy vy ~Vox ty 8y r ,(17)
2, 2
e AW _ ("t v%) 2 g b, v B)
F, aT_Lr_-zncos $ LoxT, oy .
x y
where e = sign J
(maese onf1EI20) +

Equations (17) are the equations of motion in the projected system.

3. NOTE ON THE ORTHOGONALITY CONDITION, EQ. (12)

From a brief survey of the maps, or projections, in common use, it is seen
that this condition is areasonable restriction as for most such maps it is already
satisfied. As a matter of fact, one of the most common restrictions map~-makers
wish to impose is the more general one of conformality; that is, preservation
of angles or, equivalently, equality of scale in all directions at a given point
(actually, then,the preservation of shapes of small regions), Analytically the
conformality conditions may be expressed by Eqs. (19a) and (19b):

BB\ 2. 9404,
8xryc° ¢+8x8y 0, (19a)
t. = ty (tx, ty as above). (19b)

Eq. (19a) is of course the orthogonality condition Eq. (12), and so conformality
implies orthogonality (but not conversely because of the additional condition
Eq. [19b] ).

One further remark on condition Eq. (12). Itcanbe expressed equivalentlyby




7 5ascoseno. (20)

Indeed, it is perhaps more useful in this form, since one is usually given x
and y in terms of A and ¢ rather than the inverse direction which would have to
be computed before condition Eq. (12) could be applied.

4. THE TRANSFORMED EQUATIONS FOR SOME SPECIFIC MAPS

One of the maps most in use today is the Stereographic Projection. Thiscon =
sists of a projection of the earth's surface upon some secant plane from the point
on the earth opposite the plane. If we take, as is usually the case, the projection
plane perpendicular to the earth's axis and the point of projection as the south
pole, then by geometry we can compute the equations of the map.

/ N /(X.Y)

¢0=LATITUDE OF
PROJECTION PLANE
fo s RADIUS OF EARTH

C =2 (1 +SINd,)

Figure 1. The Stereographic Projection

Then we have

C cOo8

X * 0+ siné) * %M
c .

Y T eg) " s M (21)

& pr e N
zZ=r ro



and the inverse transformation

A= tan'"l(y/x) s
2 2

2
o =1 — + )
¢ = sin <°2 X , (22)
e+ (x%+y%)

rsz+pr .,
o

The orthogonality condition is now easily verified in Eq. (12) or Eq. (20).
(Actually, this is unnecessary since it is well known that the stereographic projection
is conformal and therefore orthogonal.)

Applying these equations to Eq. (17) we get for the stereographic projection:

2 2. .2 ’
. du c'=(x"+vy) 1 _ 4c u
FeeTi—v |:29< 2 2 >+ clz+ry) (uy—-vx):| +w|: 2 N r;l'

clm(x + y2) e+ (x* + y9)

2 2 2
dv ¢ —x"+v") 1 4c Dy v
F_= +u |29 + (uy—vx) | +w +
y dt [ (02+ (x2+ y2)> c(z + ro) il [CZ + (x2 + y2) z + r;| s

2 2
dw (u” +v°) 4Qc
F === + {uy— vx). (23)
z dt z+r° 02+(x2+y2)

A large number of orthogonal maps are such that the longitude and latitude
lines on the earth are transformed into two sets of mutually perpendicular
straight lines. In these x is afunctionof A alone and y is afunction of ¢ alone,
Equivalently, we assume

oA ., 24
oy = % ax " O (24)

(Actually we need only assume the first g—)‘ = 0, since the orthogonality condition
implies g—f 2—3 = 0, which implies g—$= 0, otherwise -g—'t = 0 and -g%- 0 whichmeans
y is not a function of A or ¢. Conversely, if we had not assumed orthogonality,

Eqgs. (24) trivially imply it — see Eq. [12].) Assume also % >o (the case

%Q— < o 1is similar), Then Eqs. (17) become:

F = g—l: + (w-—ve1 tan ¢) (2Qcos ¢+%),



l“y-%‘7:+ue1 tan ¢ (20 cos ¢*-:.l')"’"¥"-

(25)
- ﬂ-—ﬁ‘f_VE—m cos $ u,
Fz dt r

2
[- g%’—!v?—u (2Q cos ¢ +%)]

Here e, = sign (-g—)- %],

If we impose the further restriction upon the projection that it be conformal we
obtain the familiar Mercator Projection. The transformation equations in this

case are:
X=X\,
y= [secéd ¢-1ogtan(-§+{-;-), (26)
2= r.r,_,

o

or the inverse set:

N\ = x,

1

¢ 2tan” ¥ — w/2, 27

*z2+r.
r=z 0

Equations (25) are then easily written entirely in the new system by subgti-

tuting
tanh y for sin ¢,

sech y for cos ¢,
sinh y for tan ¢,

and of course z+ r, for r.

Another large class of maps is that of the so-called conic projections. These
are obtained by mapping the earth onto a cone, which is secant to the earth
(usually such that the cone's axis coincides with the earth's axis) subject to the
condition that points on the same latitude line map into points at the same height
on the cone and points on the same longitude line map into points on the same ray
of the cone. The cone is then slit along a ray and flattened onto a plane,
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‘ i §§ LATlTUDE LINE
LONGITUDE

SLIT ALONG RAY
'CONE FLATTENED our
Figure 2. Construction of The Conic Projection
The transformation can be expressed:
p= £ (¢), (I an arbitrary monotonic function),
1
as < N,
Z8r— l’o.

where p , @ are polar coordinates on the x = y plane, that is,

p= x2+y2

as= tan_l (y/x). ,

The inverse transformation is then

¢t (p)ut! (\/xz + y2>.

Naca =ctant (y/x), (28)

r=z+r. , o

3 e
- Unfortunately, such a map is not, in genéral, orthogonal. We can alter our

point of view slightly, however, so as to apply the equations of motion. We do this
by thinking in terms of the polar coordinates (p, a ) instead of the rectangular
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coordinates (x, y), so that "with respect to p, a " the transformation is orthogo-~
nal. Indeed we are now in the situation Eq. (24) with x and y replaced by
a and p, respectively. Thus, if we now look at radial (& o ) and tangential(ga )
directions for a given point, P, and let F a’ Fp be the force components in

A
y €a e
/>>/
P
-~ a
r e } x
Ol

Figure 3. Radial and Tangential Directions

these directions at P and u, v, the velocity components, then Eqs. (25) apply,
again with x and y replaced by @ and p, respectively.

Getting back to rectangular coordinates, some conic projections are orthogo-
nal in the old sense. Applying condition Eq. (12) to Eqgs. (26) one finds the
function f must take the form

~1/c
p =f(dh =k [tm({-+-g¥)] ) (29)

In this special case the transformation also turns out to be orthogonal and we
have in fact the "Lambert" conformal conic. k and ¢ are chosen usually to
satisfy specific conditions, such as true scale at two standard parallels. (Note
that the stereographic projection is an instance of this with c =1 and k= ¢
[that is, the "¢" of stereographic projection] since

fon i) -ty

Of course this was to be expected since projection on a plane is a limiting case
of projection on cones,)

Thus, Eqs. (17) apply also to this oft-used class of projections, and take a
form similar to that for stereographic projection.
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